UM ESTUDO CIENTOMÉTRICO DA AVALIAÇÃO DE USABILIDADE EM APLICAÇÕES WEBGIS

Autores

  • Marciano da Costa Lima UFPR
  • Luciene Stamato Delazari

Palavras-chave:

Cientometria, Usabilidade, WebGIS

Resumo

Este estudo realiza uma análise cienciométrica da produção científica relacionada à avaliação de usabilidade em plataformas WebGIS, com base em publicações indexadas na Web of Science entre 2013 e 2024. O objetivo principal foi mapear as principais frentes de pesquisa, identificar tendências temporais, examinar colaborações científicas e evidenciar lacunas metodológicas. Após um rigoroso processo de filtragem, 134 artigos foram analisados com o suporte do software VOSviewer, possibilitando a visualização de redes de coocorrência de palavras-chave, coautoria e co-citação. A análise de palavras-chave revelou três grandes áreas temáticas: (i) usabilidade e experiência do usuário, (ii) estruturação e interface de plataformas WebGIS, e (iii) participação pública e planejamento urbano. Já a análise de co-citação evidenciou dois agrupamentos teóricos principais, centrados em fundamentos de usabilidade e em abordagens participativas (PPGIS). Os resultados indicam que a pesquisa em WebGIS tem avançado no sentido da inclusão e da acessibilidade, mas ainda enfrenta desafios relacionados à ausência de padronização terminológica, fragmentação das redes de colaboração e escassez de estudos longitudinais. Este trabalho contribui para a sistematização do conhecimento na área, oferecendo subsídios para o desenvolvimento de avaliações mais integradas e metodologicamente robustas.

Biografia do Autor

Marciano da Costa Lima, UFPR

Mestrado em Ciências Geodésicas pela Universidade Federal do Paraná, Brasil(2020)
Estudante da Universidade Federal do Paraná 

Luciene Stamato Delazari

Doutorado em Engenharia de Transportes pela Universidade de São Paulo, Brasil(2004)
Vice-Chair User Experience Commission do International Cartographic Association , Estados Unidos

Referências

ABRAHAM, S. A. Usability problems in GI Web applications: A lesson from literature. AGILE: GIScience Series, v. 2, p. 1-7, 2021. DOI: https://doi.org/10.5194/agile-giss-2-17-2021.

ALABDULWAHHAB, F. A. Web 3.0: The decentralized web blockchain networks and protocol innovation. In: INTERNATIONAL CONFERENCE ON COMPUTER APPLICATIONS & INFORMATION SECURITY (ICCAIS), 1., 2018. Anais [...]. [S.l.]: IEEE, 2018. p. 1-4. DOI: https://doi.org/10.1109/CAIS.2018.8441990.

BABELON, I.; STÅHLE, A.; BALFORS, B. Toward Cyborg PPGIS: exploring socio-technical requirements for the use of web-based PPGIS in two municipal planning cases, Stockholm region, Sweden. Journal of Environmental Planning and Management, v. 60, n. 8, p. 1366-1390, 2017. DOI: https://doi.org/10.1080/09640568.2016.1221798.

BANGOR, A.; KORTUM, P.; MILLER, J. Determining what individual SUS scores mean: Adding an adjective rating scale. Journal of Usability Studies, v. 4, n. 3, p. 114-123, 2009.

BROOKE, J. et al. SUS - A quick and dirty usability scale. Usability Evaluation in Industry, v. 189, n. 194, p. 4-7, 1996.

BROWN, G.; KYTTÄ, M. Key issues and research priorities for public participation GIS (PPGIS): A synthesis based on empirical research. Applied Geography, v. 46, p. 122-136, 2014. DOI: https://doi.org/10.1016/j.apgeog.2013.11.004.

BUGS, G. et al. An assessment of Public Participation GIS and Web 2.0 technologies in urban planning practice in Canela, Brazil. Cities, v. 27, n. 3, p. 172-181, 2010. DOI: https://doi.org/10.1016/j.cities.2009.11.008.

ÖLTEKIN, A. et al. Evaluating the effectiveness of interactive map interface designs: a case study integrating usability metrics with eye-movement analysis. Cartography and Geographic Information Science, v. 36, n. 1, p. 5-17, 2009. DOI: https://doi.org/10.1559/152304009787340197.

FAN, H.; KONG, G.; ZHANG, C. An Interactive platform for low-cost 3D building modeling from VGI data using convolutional neural network. Big Earth Data, v. 5, n. 1, p. 49-65, 2021. DOI: https://doi.org/10.1080/20964471.2021.1886391.

GOODCHILD, M. F. Citizens as sensors: the world of volunteered geography. GeoJournal, v. 69, p. 211-221, 2007. DOI: https://doi.org/10.1007/s10708-007-9111-y.

GOTTWALD, S.; LAATIKAINEN, T. E.; KYTTÄ, M. Exploring the usability of PPGIS among older adults: Challenges and opportunities. International Journal of Geographical Information Science, v. 30, n. 12, p. 2321-2338, 2016. DOI: https://doi.org/10.1080/13658816.2016.1170837.

GUHA, R.; AL-DABASS, D. Impact of Web 2.0 and cloud computing platform on software engineering. In: INTERNATIONAL SYMPOSIUM ON ELECTRONIC SYSTEM DESIGN, 2010. Anais [...]. [S.l.]: IEEE, 2010. p. 213-218. DOI: https://doi.org/10.1109/ISED.2010.48.

HAKLAY, M. How good is volunteered geographical information? A comparative study of OpenStreetMap and Ordnance Survey datasets. Environment and Planning B: Planning and Design, v. 37, n. 4, p. 682-703, 2010. DOI: https://doi.org/10.1068/b35097.

HAKLAY, M.; TOBÓN, C. Usability evaluation and PPGIS: towards a user-centred design approach. International Journal of Geographical Information Science, v. 17, n. 6, p. 577-592, 2003. DOI: https://doi.org/10.1080/1365881031000114107.

HAN, W. et al. A geospatial web service approach for creating on-demand cropland data layer thematic maps. Transactions of the ASABE, v. 57, n. 1, p. 239-247, 2014. DOI: https://doi.org/10.13031/trans.57.10020.

HENZEN, C. Building a framework of usability patterns for web applications in spatial data infrastructures. ISPRS International Journal of Geo-Information, 2018. DOI: https://doi.org/10.3390/ijgi7110446.

ISO/IEC. ISO 9241-11: Ergonomic requirements for office work with visual display terminals. Geneva: ISO, 1998.

JANICKI, J. et al. Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: The design and implementation of antmaps.org. Ecological Informatics, v. 32, p. 185-193, 2016. DOI: https://doi.org/10.1016/j.ecoinf.2016.02.006.

KINGSTON, R. et al. Web-based public participation geographical information systems: an aid to local environmental decision-making. Computers, Environment and Urban Systems, v. 24, n. 2, p. 109-125, 2000. DOI: https://doi.org/10.1016/S0198-9715(99)00049-6.

LV, Z. et al. Virtual reality smart city based on WebVRGIS. IEEE Internet of Things Journal, v. 3, n. 6, p. 1015-1024, 2016. DOI: https://doi.org/10.1109/JIOT.2016.2546307.

MACEACHREN, A. M. et al. Visualizing geospatial information uncertainty: What we know and what we need to know. Cartography and Geographic Information Science, v. 32, n. 3, p. 139-160, 2005. DOI: https://doi.org/10.1559/1523040054738936.

NIELSEN, J. Usability engineering. [S.l.]: AP Professional, 1993. DOI: https://doi.org/10.1016/B978-0-08-052029-2.50007-3.

NIELSEN, J. Usability inspection methods. In: CONFERENCE COMPANION ON HUMAN FACTORS IN COMPUTING SYSTEMS, 1994. Anais [...]. [S.l.], 1994. p. 413-414. DOI: https://doi.org/10.1145/259963.260531.

NIVALA, A.-M.; BREWSTER, S.; SARJAKOSKI, T. L. Usability evaluation of web mapping sites. The Cartographic Journal, v. 45, n. 2, p. 129-138, 2008. DOI: https://doi.org/10.1179/174327708X305120.

RESCH, B.; WOHLFAHRT, R.; WOSNIOK, C. Web-based 4D visualization of marine geo-data using WebGL. Cartography and Geographic Information Science, v. 41, n. 3, p. 235-247, 2014. DOI: https://doi.org/10.1080/15230406.2014.901901.

ROTH, R. E. Interactive maps: What we know and what we need to know. Journal of Spatial Information Science, n. 6, p. 59-115, 2013. DOI: https://doi.org/10.5311/JOSIS.2013.6.105.

ROTH, R. E.; ROSS, K. S.; MACEACHREN, A. M. User-centered design for interactive maps: A case study in crime analysis. ISPRS International Journal of Geo-Information, v. 4, n. 1, p. 262-301, 2015. DOI: https://doi.org/10.3390/ijgi4010262.

RZESZEWSKI, M.; KOTUS, J. Usability and usefulness of internet mapping platforms in participatory spatial planning. Applied Geography, v. 103, p. 56-69, 2019. DOI: https://doi.org/10.1016/j.apgeog.2019.01.001.

SERMET, Y.; DEMIR, I.; MUSTE, M. A serious gaming framework for decision support on hydrological hazards. Science of The Total Environment, v. 728, p. 138895, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2020.138895.

SIEBER, R. Public participation geographic information systems: A literature review and framework. Annals of the Association of American Geographers, v. 96, n. 3, p. 491-507, 2006. DOI: https://doi.org/10.1111/j.1467-8306.2006.00702.x.

SOMMERVILLE, I. Engenharia de software. 10. ed. São Paulo: Addison-Wesley/Pearson, 2019.

TAYLOR, B. et al. Customizable 3D printed tactile maps as interactive overlays. In: INTERNATIONAL ACM SIGACCESS CONFERENCE ON COMPUTERS AND ACCESSIBILITY, 18., 2016. Anais [...]. [S.l.]: ACM, 2016. p. 71-79. DOI: https://doi.org/10.1145/2982142.2982167.

UNRAU, R.; KRAY, C. Usability evaluation for geographic information systems: A systematic literature review. International Journal of Geographical Information Science, v. 33, n. 4, p. 645-665, 2019. DOI: https://doi.org/10.1080/13658816.2018.1554813.

VAN ECK, N.; WALTMAN, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, v. 84, n. 2, p. 523-538, 2010. DOI: https://doi.org/10.1007/s11192-009-0146-3.

VINUEZA-MARTINEZ, J. et al. Geographic information systems (GISs) based on WebGIS architecture: Bibliometric analysis of the current status and research trends. Sustainability, v. 16, n. 15, p. 6439, 2024. DOI: https://doi.org/10.3390/su16156439.

Yan, E., & Ding, Y. (2009). Applying centrality measures to impact analysis: A coauthorship network analysis. Journal of the American Society for Information Science and Technology, 60(10), 2107–2118. https://doi.org/10.1002/asi.21128

YANG, D. et al. CrimeTelescope: crime hotspot prediction based on urban and social media data fusion. World Wide Web, v. 21, p. 1323-1347, 2018. DOI: https://doi.org/10.1007/s11280-017-0515-4.

ZUPIC, I.; ČATER, T. Bibliometric methods in management and organization. Organizational Research Methods, v. 18, n. 3, p. 429-472, 2015. DOI: https://doi.org/10.1177/1094428114562629.

Downloads

Publicado

31-08-2025

Edição

Seção

Artigos