A SCIENTOMETRIC STUDY OF USABILITY EVALUATION IN WEBGIS APPLICATIONS
Keywords:
Scientometrics, Usability, WebGISAbstract
This study presents a scientometric analysis of the scientific production related to usability evaluation in WebGIS platforms, based on publications indexed in the Web of Science between 2013 and 2024. The main objective was to map key research fronts, identify temporal trends, examine scientific collaborations, and highlight methodological gaps. After a rigorous filtering process, 134 articles were analyzed using the VOSviewer software, which enabled the visualization of co-occurrence networks of keywords, co-authorship, and co-citation. The keyword analysis revealed three major thematic areas: (i) usability and user experience, (ii) structuring and interface design of WebGIS platforms, and (iii) public participation and urban planning. The co-citation analysis, in turn, revealed two primary theoretical clusters, focusing on usability fundamentals and participatory approaches (PPGIS). The findings indicate that WebGIS research has increasingly moved toward inclusion and accessibility, yet still faces challenges such as terminological inconsistency, fragmented collaboration networks, and a lack of longitudinal usability studies. This work contributes to the systematization of knowledge in the field and offers insights for the development of more integrated and methodologically robust usability evaluations.
References
ABRAHAM, S. A. Usability problems in GI Web applications: A lesson from literature. AGILE: GIScience Series, v. 2, p. 1-7, 2021. DOI: https://doi.org/10.5194/agile-giss-2-17-2021.
ALABDULWAHHAB, F. A. Web 3.0: The decentralized web blockchain networks and protocol innovation. In: INTERNATIONAL CONFERENCE ON COMPUTER APPLICATIONS & INFORMATION SECURITY (ICCAIS), 1., 2018. Anais [...]. [S.l.]: IEEE, 2018. p. 1-4. DOI: https://doi.org/10.1109/CAIS.2018.8441990.
BABELON, I.; STÅHLE, A.; BALFORS, B. Toward Cyborg PPGIS: exploring socio-technical requirements for the use of web-based PPGIS in two municipal planning cases, Stockholm region, Sweden. Journal of Environmental Planning and Management, v. 60, n. 8, p. 1366-1390, 2017. DOI: https://doi.org/10.1080/09640568.2016.1221798.
BANGOR, A.; KORTUM, P.; MILLER, J. Determining what individual SUS scores mean: Adding an adjective rating scale. Journal of Usability Studies, v. 4, n. 3, p. 114-123, 2009.
BROOKE, J. et al. SUS - A quick and dirty usability scale. Usability Evaluation in Industry, v. 189, n. 194, p. 4-7, 1996.
BROWN, G.; KYTTÄ, M. Key issues and research priorities for public participation GIS (PPGIS): A synthesis based on empirical research. Applied Geography, v. 46, p. 122-136, 2014. DOI: https://doi.org/10.1016/j.apgeog.2013.11.004.
BUGS, G. et al. An assessment of Public Participation GIS and Web 2.0 technologies in urban planning practice in Canela, Brazil. Cities, v. 27, n. 3, p. 172-181, 2010. DOI: https://doi.org/10.1016/j.cities.2009.11.008.
ÖLTEKIN, A. et al. Evaluating the effectiveness of interactive map interface designs: a case study integrating usability metrics with eye-movement analysis. Cartography and Geographic Information Science, v. 36, n. 1, p. 5-17, 2009. DOI: https://doi.org/10.1559/152304009787340197.
FAN, H.; KONG, G.; ZHANG, C. An Interactive platform for low-cost 3D building modeling from VGI data using convolutional neural network. Big Earth Data, v. 5, n. 1, p. 49-65, 2021. DOI: https://doi.org/10.1080/20964471.2021.1886391.
GOODCHILD, M. F. Citizens as sensors: the world of volunteered geography. GeoJournal, v. 69, p. 211-221, 2007. DOI: https://doi.org/10.1007/s10708-007-9111-y.
GOTTWALD, S.; LAATIKAINEN, T. E.; KYTTÄ, M. Exploring the usability of PPGIS among older adults: Challenges and opportunities. International Journal of Geographical Information Science, v. 30, n. 12, p. 2321-2338, 2016. DOI: https://doi.org/10.1080/13658816.2016.1170837.
GUHA, R.; AL-DABASS, D. Impact of Web 2.0 and cloud computing platform on software engineering. In: INTERNATIONAL SYMPOSIUM ON ELECTRONIC SYSTEM DESIGN, 2010. Anais [...]. [S.l.]: IEEE, 2010. p. 213-218. DOI: https://doi.org/10.1109/ISED.2010.48.
HAKLAY, M. How good is volunteered geographical information? A comparative study of OpenStreetMap and Ordnance Survey datasets. Environment and Planning B: Planning and Design, v. 37, n. 4, p. 682-703, 2010. DOI: https://doi.org/10.1068/b35097.
HAKLAY, M.; TOBÓN, C. Usability evaluation and PPGIS: towards a user-centred design approach. International Journal of Geographical Information Science, v. 17, n. 6, p. 577-592, 2003. DOI: https://doi.org/10.1080/1365881031000114107.
HAN, W. et al. A geospatial web service approach for creating on-demand cropland data layer thematic maps. Transactions of the ASABE, v. 57, n. 1, p. 239-247, 2014. DOI: https://doi.org/10.13031/trans.57.10020.
HENZEN, C. Building a framework of usability patterns for web applications in spatial data infrastructures. ISPRS International Journal of Geo-Information, 2018. DOI: https://doi.org/10.3390/ijgi7110446.
ISO/IEC. ISO 9241-11: Ergonomic requirements for office work with visual display terminals. Geneva: ISO, 1998.
JANICKI, J. et al. Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: The design and implementation of antmaps.org. Ecological Informatics, v. 32, p. 185-193, 2016. DOI: https://doi.org/10.1016/j.ecoinf.2016.02.006.
KINGSTON, R. et al. Web-based public participation geographical information systems: an aid to local environmental decision-making. Computers, Environment and Urban Systems, v. 24, n. 2, p. 109-125, 2000. DOI: https://doi.org/10.1016/S0198-9715(99)00049-6.
LV, Z. et al. Virtual reality smart city based on WebVRGIS. IEEE Internet of Things Journal, v. 3, n. 6, p. 1015-1024, 2016. DOI: https://doi.org/10.1109/JIOT.2016.2546307.
MACEACHREN, A. M. et al. Visualizing geospatial information uncertainty: What we know and what we need to know. Cartography and Geographic Information Science, v. 32, n. 3, p. 139-160, 2005. DOI: https://doi.org/10.1559/1523040054738936.
NIELSEN, J. Usability engineering. [S.l.]: AP Professional, 1993. DOI: https://doi.org/10.1016/B978-0-08-052029-2.50007-3.
NIELSEN, J. Usability inspection methods. In: CONFERENCE COMPANION ON HUMAN FACTORS IN COMPUTING SYSTEMS, 1994. Anais [...]. [S.l.], 1994. p. 413-414. DOI: https://doi.org/10.1145/259963.260531.
NIVALA, A.-M.; BREWSTER, S.; SARJAKOSKI, T. L. Usability evaluation of web mapping sites. The Cartographic Journal, v. 45, n. 2, p. 129-138, 2008. DOI: https://doi.org/10.1179/174327708X305120.
RESCH, B.; WOHLFAHRT, R.; WOSNIOK, C. Web-based 4D visualization of marine geo-data using WebGL. Cartography and Geographic Information Science, v. 41, n. 3, p. 235-247, 2014. DOI: https://doi.org/10.1080/15230406.2014.901901.
ROTH, R. E. Interactive maps: What we know and what we need to know. Journal of Spatial Information Science, n. 6, p. 59-115, 2013. DOI: https://doi.org/10.5311/JOSIS.2013.6.105.
ROTH, R. E.; ROSS, K. S.; MACEACHREN, A. M. User-centered design for interactive maps: A case study in crime analysis. ISPRS International Journal of Geo-Information, v. 4, n. 1, p. 262-301, 2015. DOI: https://doi.org/10.3390/ijgi4010262.
RZESZEWSKI, M.; KOTUS, J. Usability and usefulness of internet mapping platforms in participatory spatial planning. Applied Geography, v. 103, p. 56-69, 2019. DOI: https://doi.org/10.1016/j.apgeog.2019.01.001.
SERMET, Y.; DEMIR, I.; MUSTE, M. A serious gaming framework for decision support on hydrological hazards. Science of The Total Environment, v. 728, p. 138895, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2020.138895.
SIEBER, R. Public participation geographic information systems: A literature review and framework. Annals of the Association of American Geographers, v. 96, n. 3, p. 491-507, 2006. DOI: https://doi.org/10.1111/j.1467-8306.2006.00702.x.
SOMMERVILLE, I. Engenharia de software. 10. ed. São Paulo: Addison-Wesley/Pearson, 2019.
TAYLOR, B. et al. Customizable 3D printed tactile maps as interactive overlays. In: INTERNATIONAL ACM SIGACCESS CONFERENCE ON COMPUTERS AND ACCESSIBILITY, 18., 2016. Anais [...]. [S.l.]: ACM, 2016. p. 71-79. DOI: https://doi.org/10.1145/2982142.2982167.
UNRAU, R.; KRAY, C. Usability evaluation for geographic information systems: A systematic literature review. International Journal of Geographical Information Science, v. 33, n. 4, p. 645-665, 2019. DOI: https://doi.org/10.1080/13658816.2018.1554813.
VAN ECK, N.; WALTMAN, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, v. 84, n. 2, p. 523-538, 2010. DOI: https://doi.org/10.1007/s11192-009-0146-3.
VINUEZA-MARTINEZ, J. et al. Geographic information systems (GISs) based on WebGIS architecture: Bibliometric analysis of the current status and research trends. Sustainability, v. 16, n. 15, p. 6439, 2024. DOI: https://doi.org/10.3390/su16156439.
Yan, E., & Ding, Y. (2009). Applying centrality measures to impact analysis: A coauthorship network analysis. Journal of the American Society for Information Science and Technology, 60(10), 2107–2118. https://doi.org/10.1002/asi.21128
YANG, D. et al. CrimeTelescope: crime hotspot prediction based on urban and social media data fusion. World Wide Web, v. 21, p. 1323-1347, 2018. DOI: https://doi.org/10.1007/s11280-017-0515-4.
ZUPIC, I.; ČATER, T. Bibliometric methods in management and organization. Organizational Research Methods, v. 18, n. 3, p. 429-472, 2015. DOI: https://doi.org/10.1177/1094428114562629.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the published articles will be transferred to the Uniaaraguaia Magazine, allowing its subsequent reproduction as transcription and with due citation of source. In the event of acceptance and before the publication of the article, the plaintiff (s) shall write a statement formally transferring copyright to the magazine.
The author may also print and distribute copies of his article, provided that he mentions that the rights belong to the Uniaaraguaia Magazine.
Author rights include the right to reproduce in full or partly by any means, distribute this article, including figures and photographs.
By submitting originals to the Uniaaraguaia magazine, the author or authors express agreement with the following terms:
a) Authors maintain copyright and grant Uniaraguaia magazine the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution license that allows the sharing of work with recognition of the authorship and initial publication in this magazine.
b) Authors are authorized to assume additional contracts separately, for non-expiration distribution of the work version published in this magazine (eg publish in institutional repository or as book chapter), with recognition of authorship and initial publication in this journal.
c) Authors are allowed and are encouraged to publish and distribute their work online (eg in institutional repositories or on their personal page) to any point before or during the editorial process, as this can generate productive changes as well as increase the impact and citation of published work.