TEMPORAL VARIABILITY OF DROUGHT PERIODS IN THE MUNICIPALITY OF CAMPINA GRANDE – PB

Authors

  • Welinagila Grangeiro Sousa
  • Antônia Silânia Andrade
  • Ricardo da Cunha Correia
  • Santana Lívia Lima
  • Anddreza Maddalena Universidade Federal da Paraíba
  • Khyson Gomes Abreu

Keywords:

Extreme temperatures, precipitation, climate trends

Abstract

Understanding rainfall variability is crucial for agricultural planning and water resource management. Therefore, the objective of this study was to identify and understand the temporal variability of dry periods in the municipality of Campina Grande, Paraíba state, from 2000 to 2023, using drought indices and statistical trend analysis methods. The results confirmed the strong seasonality of rainfall in this region through the SPI-12 and DSI-12 indices. Severe droughts were observed between 2012 and 2021, with 2015, 2016, and 2017 being the most critical years. The DSI-12 is more sensitive to prolonged droughts, reinforcing its complementary use in monitoring. According to the Mann-Kendall and Pettitt tests, significant negative trends were identified, with changes in the series starting in 2011, indicating an intensification of droughts in the region.

 

References

ALCÂNTARA, L. R. P. et al. Análise de tendência para dados pluviométricos no município de Toritama-PE. Journal of Environmental Analysis and Progress, v. 4, n. 2, p. 130–139, 2019. DOI: 10.22201/iingen.0718378xe.2023.16.1.82116.

ANDRADE, A. S. et al. Análise de tendência do índice de precipitação padronizado na microrregião de Sousa-PB. Journal of Hyperspectral Remote Sensing, v. 13, n. 3, p. 432–443, 2022.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Sotta, E. D.; Sampaio, F. G.; Marzall, K.; Silva, W. G. Brasília: MAPA/SENAR, 2021.

CABRAL JÚNIOR, J. B.; LUCENA, R. L. Análises estatísticas da precipitação e temperatura do ar em ambientes semiáridos. ENTRE-LUGAR, v. 12, n. 24, p. 170–191, 2021. DOI: 10.30612/rel.v12i24.15139.

CUARTAS, L. A. et al. Recent hydrological droughts in Brazil and their impact on hydropower generation. Water, v. 14, n. 4, p. 601, 2022. DOI: 10.3390/w14040601.

DASHTPAGERDI, M. M. et al. An investigation of drought magnitude trend during 1975–2005 in arid and semi-arid regions of Iran. Environmental Earth Sciences, v. 73, p. 1231–1244, 2018. DOI: 10.1007/s12665-014-3477-1.

DEGER, I. H. et al. Spatio-temporal variability of hydrological drought and wet periods in the Euphrates Basin, Turkey. Journal of Hydrology, v. 603, p. 127–139, 2025. DOI: 10.1007/s11269-025-04229-z.

EMBRAPA ALGODÃO. Sistemas de produção de algodão: orientações técnicas para o agricultor. 2023.

FERREIRA, V. G. et al. Multi-sensor geodetic observations for drought: Progresses, challenges, and opportunities. Science of Remote Sensing, v. 6, p. 100069, 2022. DOI: 10.1016/j.srs.2022.100069.

GILBERT, R. O. Statistical methods for environmental pollution monitoring. New York: John Wiley & Sons, 1987.

GUEDES, H. A. S.; PRIEBE, P. S.; MANKE, E. B. Tendências em séries temporais de precipitação no norte do Estado do Rio Grande do Sul, Brasil. Revista Brasileira de Meteorologia, v. 34, n. 2, p. 283–291, 2019. DOI: 10.1590/0102-7786334023.

HAYES, M.; WILHITE, D.; SVOBODA, M. The Lincoln Declaration on drought indices: Universal meteorological drought index recommended. Bulletin of the American Meteorological Society, v. 92, n. 4, p. 485–488, 2011. DOI: 10.1175/2010BAMS3103.1.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). Estimativas da população residente no Brasil e unidades da federação, 2022. Rio de Janeiro: IBGE, 2022. Disponível em: https://www.ibge.gov.br. Acesso em: 23 out. 2025.

JÚNIOR, I. B. S. et al. Space-time variability of drought characteristics in Pernambuco, Brazil. Water, v. 16, n. 11, p. 1490, 2024. DOI: 10.3390/w16111490.

KAZEMZADEH, M.; MALEKIAN, A. Homogeneity analysis of streamflow records in arid and semi-arid regions of northwestern Iran. Journal of Arid Land, v. 10, p. 493–506, 2018. DOI: 10.1007/s40333-018-0064-4.

KENDALL, M. G. Rank correlation measures. 2. ed. London: Charles Griffin, 1945.

KENDALL, M. G. Rank correlation methods. 3. ed. London: Charles Griffin, 1948.

KHAN, M. I. et al. Detecting the persistence of drying trends under changing climate conditions using four meteorological drought indices. Meteorological Applications, v. 25, p. 184–194, 2018.

LIU, P. A survey of remote-sensing big data. Frontiers in Environmental Science, v. 3, p. 45, 2015. DOI: 10.3389/fenvs.2015.00045.

MACEDO, M. J. H.; GUEDES, R. V. S.; SOUSA, F. A. S. Monitoramento e intensidade das secas e chuvas na cidade de Campina Grande/PB. Revista Brasileira de Climatologia, v. 8, 2024. DOI: 10.5380/abclima.v8i0.25797.

MARENGO, J. A. et al. Increased climate pressure on the agricultural frontier in the Eastern Amazonia–Cerrado transition zone. Scientific Reports, v. 12, 2022.

MCKEE, T. B.; DOESKEN, N. J.; KLEIST, J. The relationship of drought frequency and duration to time scales. In: Proceedings of the Ninth Conference on Applied Climatology. Boston: American Meteorological Society, 1993. p. 179–184.

MU, Q. et al. A remotely sensed global terrestrial drought severity index. Bulletin of the American Meteorological Society, v. 94, n. 1, p. 83–98, 2013. DOI: 10.1175/BAMS-D-11-00213.1.

NASCIMENTO, M. B.; MEDEIROS, M. D. Drought severity indices in the Semiarid, Paraíba. Mercator, v. 21, e21024, 2022.

NASCIMENTO, M. B.; SILVA, I. W. H.; SILVA, C. M. S. Normais climatológicas da precipitação pluviométrica nos municípios de João Pessoa e Campina Grande, Estado da Paraíba entre 1981 e 2020. Revista Geonorte, v. 15, n. 50, p. 91–110, 2024. DOI: 10.21170/geonorte.2024.V.15.N.50.91.110.

PEREIRA, T. M. S.; SILVA, R. A.; SOUZA, J. P. Resgate florístico da vegetação de Floresta Estacional no município de Campina Grande-PB. Revista Geográfica Acadêmica, v. 11, n. 1, p. 1–12, 2017.

PETTITT, A. N. Non-parametric approach to the change-point problem. Applied Statistics, v. 28, n. 2, p. 126–135, 1979. DOI: 10.2307/2346729.

PIYOOSH, A. K.; GHOSH, S. K. Effect of autocorrelation on temporal trends in rainfall in a valley region at the foothills of Indian Himalayas. Stochastic Environmental Research and Risk Assessment, v. 31, p. 2075–2096, 2017. DOI: 10.1007/s00477-016-1347-y.

PONZONI, F. J.; SHIMABUKURO, Y. E.; KUPLICH, T. M. Sensoriamento remoto da vegetação. 1. ed. São Paulo: Oficina de Texto, 2012.

SALEHI, S. et al. Trend analysis and change point detection of seasonal and annual precipitation in Iran. International Journal of Climatology, v. 40, n. 1, p. 308–323, 2019. DOI: 10.1002/joc.6211.

SANTOS, C. A. et al. Análise estatística da não estacionalidade de séries temporais de vazão máxima anual diária na Bacia Hidrográfica do Rio Pardo. Holos, v. 7, p. 179, 2016. DOI: 10.15628/holos.2016.4892.

SOUSA, F. A. S.; OLIVEIRA, R. L.; SANTOS, D. O Índice de Precipitação Padronizada (IPP) na identificação de extremos de chuvas e secas na Bacia do Rio Paraguaçu (BA). Ambiência - Revista do Setor de Ciências Agrárias e Ambientais, v. 12, n. 2, p. 13, 2016. DOI: 10.5935/ambiencia.2016.02.14.

TIGKAS, D.; VANGELIS, H.; TSAKIRIS, G. DrinC: A software for drought analysis based on drought indices. Earth Science Informatics, v. 8, n. 3, p. 697–709, 2015. DOI: 10.1007/s12145-014-0178-y.

VITÓRIO, E. L. et al. Interannual rainfall variability in Northeast Brazil influenced by Pacific and Atlantic climate modes. Dynamics of Atmospheres and Oceans, v. 112, p. 101596, 2025. DOI: 10.1016/j.dynatmoce.2025.101596.

WEST, H.; QUINN, N.; HORSWELL, M. Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities. Remote Sensing of Environment, v. 232, p. 111291, 2019. DOI: 10.1016/j.rse.2019.111291.

YANG, Y. et al. A framework for assessing flow regime alterations resulting from the effects of climate change and human disturbance. Hydrological Sciences Journal, v. 63, p. 441–456, 2018. DOI: 10.1080/02626667.2018.1430897.

Published

2026-01-08

Issue

Section

Articles